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= IL, dimensionless wave number; 
acceleration of gravity : 
heat-transfer coefficients; 
= h,L/k, Biot number, j = 1,2; 
thermal conductivity of fluid : 
thickness of the fluid layer : 
Prandtl number ; 
temperature : 

T,,,, L mean temperatures of the lower and upper 
surface, respectively ; 

Tx>,. L temperatures f the outside environments: 

c time ; 
W’. velocity component in the --direction : 
2% coordinate normal to the walls. 

Greek symbols 

r, v, thermal diffusivity and kinematic viscosity : 
8’> dimensionless rest-state temperature gradient : 

II, = z/L, dimensionless coordinat ; 
6, angle measured from horizontal; 
^I i. coefficient of thermal expansion. 

Superscripts 
I ^ . . refer to disturbance quantities. 

FOR AN infinite horizontal layer offluid confined between two 
isothermal plates with lower plate hotter than the upper one, 
the transition takes place at a critical Rayleigh number 1708 
[l-6]. There are numerous other factors that affect the 
initiation of convective flow patterns in the fluid [7-l 51. In all 
of these and other investigations the boundaries confining the 
fluid are assumed at prescribed temperatures. Only in 116,171 
the problem of stability is considered for a horizontal layer 
only with one of the surfaces subjected to convective boun- 
dary condition and by neglecting the heat capacity of the 
walls. The purpose of this study is to investigate the stability 
of fluid confined between two inclined parallel layers sub- 
jected to general convective boundary conditions at both 
surfaces. 

ANALYSIS 

Consider a layer of fluid between two parallel plates 
subjected to a negative temperature gradient in the direction 
perpendicular to the plates (i.e. z-direction). Fluid is incom- 
pressible, Newtonian. the physical properties are constant 
except for the density whrch appears in the body force (i.e. 

Boussinesq approximation) and that the wall admrttancc i> 
negligible. We restrict our analysis to the r-ange of inclinations 
such that the stability in the conduction regime with longitu- 
dinal disturbances will be dominant (i.e. (i 4 75 for PC I 0.7) 
[6. 151. 

The disturbance equations for the type of stability problem 
considered here are well known [ 15. I X] : they are written as 

tla) 

Subject to the boundary condition, 

where for horizontal layer 

while p/Z\: = 0 for inclined layer: 
and MI’ and T’ are the disturbance quantities for velocity 
normal to the walls and the temperature d7’/dr is the constant 
negative temperature gradient, The disturbance quantities u 
and T’ are written as 

F’(x,p,z.t) = F(-)exp[i(k,stkz).)+ 11: 1. 

F 5 M’ or T. 

where 

(k;+k;)’ ’ z I == the wave number 

and p% m general. is a complex number. and k, = 0 for- mchned 
layer. 

Then the solution (3) is introduced into the system 01 
equations (1) and (2); the resulting expressions in the 
dimensionless form are given as 
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and the boundary conditions as 

w*=o, F=O at n=O and q=l 
d? 

(4b) for n= 1,2,3,... (lla) 

-dO*+HrtI*=O at q=O 
drl 

d0* 
-+HHZ8*=0 at q=l 
drl 

where 6, is the Kronecker delta and 
(5b) 

y, = a* +pi, [m/n] = (1 lb) 
(5c) 

where various dimensionless quantities are defined as 

qcos s f 1 

w* = L’yg( T, 1 - T&/V ’ 
p = ____ 

T,,-T,,’ 
+ p*= 1 

1 
-+-+I 
Hl H2 

To show that the principle of the exchange of stabilities is valid for the considered problem, i.e. Sm(P) = 0, we obtained the 
following expression 

Ra cos S 
19~ + 

1 
’ [DB*Dg* + (a’ + pPr)0*8*] da 

0 p= 
a2 

s 

1 
[D2w*DZG* + (2a* + P)Dw*DKJ* + aZ(a2 + P)w*G*] dq 

0 

(7) 

where - denotes complex conjugate and 

0,, = [Hz0*(l)b(l)+H,fI*(0)8*(O)]. 

This result implies that for Ra cos S > 0, the imaginary part ofPis 
zero. Then weset P = Oinequations (4a)and (5a) tocharacterize 
the marginal state ofinstabihty. To solve the stability problem we 
represent 0*(q) in a series of orthogonal functions that satisfy the 
boundary conditions (5b) and (5~) as [19]. 

where 

(84 

Equation (Ila) represents a linear homogeneous system 
which has a solution if and only if the determinant of the 
coefficients A, vanishes. This requirement leads to the 
following infinite order secular determinant for the evalu- 
ation of the Rayleigh number, Ra, 

&,&I) = A,cosBm~+H1s~nA,,~. 

&‘s are the positive roots of 

tanB = B(HI+Hz) 
P* -HIH, 

(8~) 

and the functions 0,,,(~) are orthogonal as 

where the norm N, is given as 

(8b) 

(8d) 

(8e) 

The above solution for f?*(q) is introduced into equation (4a) 
for P = 0, together with the expression for w*(q) chosen as 

One finds 

(B’-a*)%(~) = &A). (10) 

This equation is solved subject to the boundary conditions 
(4b). The solutions w*(n) and 0*(q) constructed in this 
manner are introduced into equation (5a) for P = 0 and the 
orthogonality condition for 0,,,(~) given by equation (8d) is 
utilized. One finds 

/I Y,N, 
a2RacossSmn-[m/n] =a ~=1,2,3,... (12) /I 

where the integral term, [m/n], defined,by equation (1 lb) is 
integrated exactly. For a given value of the system parameters 
“RacosS” is calculated from equation (12) for several dif- 
ferent values of the wave number “a” and the minimum value 
of the Rayleigh number, Ra,, is established. 

RESULTS 

Figure 1 shows a plot of the critical Rayleigh number Ra, 
based on the difference between the wall temperatures, (‘;ii,, 
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FIG. 1. Effects of Biot numbers HI and H, on the critical 
Rayleigh number, Ra,, based on the difference between the 

wall temperatures. 
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FIG. 2. Effects of Biot numbers H, and H, on the critical 
Rayleigh number, Ra,*, based on the difference between the 

environment temperatures. 

- ?;,,). The limiting case for H,, H, -t XI corresponds to the 
fixed temperature at the boundaries and the critical Rayleigh 
member Ra, = 1708 is the same as that for the classical 
Benard problem [l]. Ra, decreases monotonically with 
decreasing Biot numbers H, and H,; the most stable 
situation corresponds to fixed surface temperature when the 
Rayleigh number is based on the wall temperature difference, 
(Tw,, - T,,2). This implies that fixing the surface temperature 
damps the perturbation of the temperature profile more than 
that with convective boundary condition. 

Figure 2 shows a plot of the critical Rayleigh number Rar 
based on the difference between the environment tempera- 
tures, (T,, - TXZ), which remains fixed as H, and H, are 
varied. In this case the minimum value of the critical Rayleigh 
number Rar = 1708 occurs for H,. H, + co and it is the same 
as that for the Btnard problem. It is apparent from equation 
(6) that the relation between the two critical Rayleigh 
numbers is given as Ra: = Ra,[l+( l/H,)+(l/H,)]. Then, 
the results in Fig. 2 imply that the increase in [l + (l/H,) 
+ (l/H,)] by the decrease in Biot numbers is much faster than 
the decrease in Ra, based on Fig. 1. Thus Ra: increases as H, 
and H, decrease. The curves in Fig. 2 show a slight dip. The 
reason for this is as follows. For a given Hz, Ru, always 
decreases with decreasing H, as apparent from Fig. 1. 
whereas the quantity [ 1 + (1 /H,) + (l/H,)] always increases 
with HI ; then the resulting product gives rise to a slight dip in 
the curves in Fig. 2. Data in both of these figures is expected to 
be applicable for inclinations up to 75” from the horizontal for 
fluids having a Prandtl number about 0.7. For fluids with 
higher Prandtl number the transition from the longitudinal to 
transverse disturbances occur at angles greater than 75”. The 
horizontal case is applicable for all Prandtl numbers. 
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