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NOMENCLATURE
a, = AL, dimensionless wave number ;

g acceleration of gravity:

hy, by, heat-transfer coefficients

Hj, = h;L/k, Biot number, j = 1.2;

k. thermal conductivity of fluid :

L, thickness of the fluid layer :

Pr, Prandt! number ;

T, temperature ;

T.1. T, mean temperatures of the lower and upper

surface, respectively ;

T, .. T,,, temperatures fthe outside environments:
t, time ;
W, velocity component in the z-direction ;
z, coordinate normal to the walls.

Greek symbols
24V, thermal diffusivity and kinematic viscosity :
B*, dimensionless rest-state temperature gradient
7, = z/L, dimensionless coordinat ;
3, angle measured from horizontal;

7 coefficient of thermal expansion.
Superscripts
- refer to disturbance quantities.

For AN infinite horizontal layer of fluid confined between two
isothermal plates with lower plate hotter than the upper one,
the transition takes place at a critical Rayleigh number 1708
[1-6]. There are numerous other factors that affect the
initiation of convective flow patterns in the fluid [ 7-15]. In all
of these and other investigations the boundaries confining the
fluid are assumed at prescribed temperatures. Onlyin [16, 17]
the problem of stability is considered for a horizontal layer
only with one of the surfaces subjected to convective boun-
dary condition and by neglecting the heat capacity of the
walls. The purpose of this study is to investigate the stability
of fluid confined between two inclined parallel layers sub-
jected to general convective boundary conditions at both
surfaces.

ANALYSIS

Consider a layer of fluid between two parallel plates
subjected to a negative temperature gradient in the direction
perpendicular to the plates (i.e. z-direction). Fluid is incom-
pressible, Newtonian, the physical properties are constant
except for the density which appears in the body force (ie.

Boussinesq approximation) and that the wall admittance is
negligible. We restrict our analysis to the range of inclinations
such that the stability in the conduction regime with longitu-
dinal disturbances will be dominant (i.c. 8 ~ 75" for Pe ~ 0.7)
[6.15].
The disturbance equations for the type of stability problem
considered here are well known [15. 18] they are written as
ol
((";L - vVZ)Vzw' = wgVi T cos s 1ay
B
< i ‘fXV: )'['/ = dbl W
Xils ds

Subject to the boundary conditions

ow'

w=o =0 at = 0und o=/ {1
‘z
cT .
—ko ot T =0 at o =0
s i2b)
oT
koo hy T =0at - =L
2z
where for horizontal layer
22 2 N n2
A 4 { € s I 4
Vos g+ oyt Vies o o,
oxt ooyt 0zt oxToooy

while ¢/6x = 0 for inclined layer:

and w and T’ are the disturbance quantities for velocity
normal to the walls and the temperature d T/dz is the constant
negative temperature gradient. The disturbance quantities w’
and T are written as

F'(x,y,2t) = F(z)exp[ilk,x+ k,y) + pt].
F=wor T,

(3}

where

(k? +k3)"'% = A = the wave number
and p, in general, is a complex number, and k, = 0 for inclined
layer.

Then the solution (3) is introduced into the system of
equations (1) and (2); the resulting expressions in the
dimensionless form are given as

[P—(D?—a2](D* —a®Ww*in) = —a*0*(n)

[PPr—(D?—a® ]0*(n) = Ruw*inicose

(4a)

{3a)
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and the boundary conditions as 5 Am{ 2y,,,N,,, 600 [m /n]} 0
dw* m=1 a‘*Racosd
w* =0, a:O at n=0and n=1 (4b) for n=123.. (lla)
do* where J,,, is the Kronecker delta and
——+H,0*=0 at n=0 (5b)
dn 1
do* Ym =+ BE, [min] = J W()0,(1)dn.  (11b)
— 4+ H,0*=0 at =1 (5¢) 0
dn
where various dimensionless quantities are defined as
d2 hiL pL?
2 = [2)2 2= =—— j=1lor2, P="—,
a L% D ap H,; Pt i or "
B*an(T,y — 002)L3 gy(T1— _wz)L3
Ra = = ,
av av (6)
e Weosd . T 2o ]
Lg(T, — To)y To1— T2 L L+L+1
H, H,

To show that the principle of the exchange of stabilities is valid for the considered problem, i.e. dm(P) = 0, we obtained the

following expression

Racosé

(12

where ~ denotes complex conjugate and

1
J [D*w*D*W* 4 (2a% + P)Dw*DWw* + a*(a® + P)w*Ww*] dy
0

1
o +f [DO*DO* + (a® + PPr)o*d*] dy
o

8o = [H,0*(1)F*(1)+ H,6%(0)0*(0)].

This result implies that for Ra cos > 0, theimaginary part of Pis
zero. Then we set P = Oin equations (4a)and (5a)to characterize
the marginal state of instability. To solve the stability problem we
represent 6*(x) in a series of orthogonal functions that satisfy the
boundary conditions (5b) and (5¢) as [19].

0*¥n) = X Anbn(n) (8a)
m=1
where
Hm(rl) = ﬁmCOS ﬂm”+Hl Sinﬂm’l' (Sb)
B..’s are the positive roots of
H+H
tan § = -%—‘——2) (8¢)
B*—H,H,
and the functions 6,,(n) are orthogonal as
1 0 if m#n
J ()0, () dry = { . (8d)
o N, if m=n

where the norm N,, is given as

1 H
N,,,=§[(ﬂi+H%)(l+ﬂi+ZH§)+H1]. (8e)

The above solution for 6*{n) is introduced into equation (4a)
for P = 0, together with the expression for w*(n) chosen as

wrn) = a® } Anwn(n). ®)

m=1

One finds

(D* =@ wy () = B, (). (10)
This equation is solved subject to the boundary conditions
(4b). The solutions w*(y) and 6*(n) constructed in this
manner are introduced into equation (5a) for P = 0 and the
orthogonality condition for 6,,(n) given by equation (8d) is
utilized. One finds

Equation (11a) represents a linear homogeneous system
which has a solution if and only if the determinant of the
coefficients A, vanishes. This requirement leads to the
following infinite order secular determinant for the evalu-
ation of the Rayleigh number, Ra,

VN

LY S
a*Racosd m/n]

=0 #»=123.. (12

where the integral term, [m/n], defined by equation (11b) is
integrated exactly. For a given value of the system parameters
“Racos ™ is calculated from equation (12) for several dif-
ferent values of the wave number “a” and the minimum value
of the Rayleigh number, Ra,, is established.

RESULTS

Figure 1 shows a plot of the critical Rayleigh number Ra,
based on the difference between the wall temperatures, (T,
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F1G. 1. Effects of Biot numbers H, and H, on the critical
Rayleigh number, Ra,, based on the difference between the
wall temperatures.
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F1G. 2. Effects of Biot numbers H, and H, on the critical
Rayleigh number, Ra}, based on the difference between the
environment temperatures.

— T,y2). The limiting case for H,, H, - 20 corresponds to the
fixed temperature at the boundaries and the critical Rayleigh
member Ra, = 1708 is the same as that for the classical
Bénard problem [1]. Ra, decreases monotonically with
decreasing Biot numbers H, and H,; the most stable
situation corresponds to fixed surface temperature when the
Rayleigh number is based on the wall temperature difference,
(T, — T,,). This implies that fixing the surface temperature
damps the perturbation of the temperature profile more than
that with convective boundary condition.

Figure 2 shows a plot of the critical Rayleigh number Ra*
based on the difference between the environment tempera-
tures, (T, — T,), which remains fixed as H, and H, are
varied. In this case the minimum value of the critical Rayleigh
number Ra} = 1708 occurs for H,, H, — oo and it is the same
as that for the Bénard problem. It is apparent from equation
(6) that the relation between the two critical Rayleigh
numbers is given as Ra} = Ra,[1+(1/H;)+(1/H,)]. Then,
the results in Fig. 2 imply that the increase in [1+(1/H,)
+(1/H,)] by the decrease in Biot numbers is much faster than
the decrease in Ra,based on Fig. 1. Thus Ra¥* increases as H,
and H, decrease. The curves in Fig. 2 show a slight dip. The
reason for this is as follows. For a given H,, Ra, always
decreases with decreasing H, as apparent from Fig 1,
whereas the quantity [1+(1/H,)+(1/H,)] always increases
with H ; then the resulting product gives rise to a slight dip in
the curves in Fig. 2. Data in both of these figures is expected to
be applicable for inclinations up to 75° from the horizontal for
fluids having a Prandt] number about 0.7. For fluids with
higher Prandtl number the transition from the longitudinal to
transverse disturbances occur at angles greater than 75°. The
horizontal case is applicable for all Prandtl numbers.
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